SPACE RESEARCH INSTITUTE
 Academy of Sciences, USSR

H-223
K.I. Gringauz, N. M. Shutte

ALTITUDE CHANGES OF THE ELECTRICAL POTENTIAL OF THE "ERIDAN" ROCKET DURING ARAKS EXPERIMENT

INSTITUTE FOR SPACE RESEARCH
ACADEMY OF SCIENCES OF THE USSR

\author{

K.I.Gringauz, N.M. Shutte

 ALTITUDE CHANGES OF THE ELECTRICAL
 POTENTIAL OF THE "ERIDAN" ROCKET
 DURING ARAKS EXPERIMENT}

Д-223

1. Introduction

In carring out the experiments with the use of electron accelerators (electron guns) installed on board the rocket it!s necessary to know the rocket electrical potential relative to the environment of ϕ, since the real energy of injected electrons $E=E$ accel" 0 , where E accel is the energy determined by the accelerator device.

The value of potential \varnothing is determined mainly by the injected electron beam intensity (i.e. the gun current) and the electron flow to the rocket surface from the environment, in turn, depending on Φ and can not be accurately calcula ted.

It was the first rocket experiment (1969) with the electron accelerator [I] when the current pulses $\sim 0,5 \mathrm{~A}$ and duration ~ 1 sec were injected to the ionosphere, To secure the rocket body neutralization a depoying metallized "umbrella" of large area was used due to which the rocket cross-section collecting the neutraizzing chargea from the environment was considerably increased. In [I] it is mentioned that the potential - value Φ in this experiment was low, that can be explained by the "umbrella" efficiency.

In the second experiment (Echo-1-2,3, 1970) the injection current pulses were only $\sim 70 \mathrm{~mA}$ with the duration $0,0165$. In this case potential ϕ did not exceed 200 V [2].

In Soviet-French experiment Araks which has been prepared and carried out under the joint guidance of R. \%.Sagdeev, I. A_{θ} Zhulin and $F_{\text {F }}$ Cambu the program of accelerator operation provided for the injection pulses with two durations: 2.56 sec and 20 msec . For this experiment the metallized "umbrella" was not used for the neutralization; a power cesium plasma generator was installed on board the rocket "Eridan". Which, however, was switched on only during a part of the flight. Therefore, the high values of ϕ could be assumed (in any case when the plasma generator was switched off).

In rocket experiments $[1-3]$ for potential ϕ determining a method of the retarding potential analyzer vas used, whlle in Echo-2 experiment Langmuir probe method [4]. In experiment [1] the retarding potential value was changed from 0 to 2000 v for 70 mscc , in Echo- 1 experiment [2-3] from 0 to 8750 v in accordance with the specific program the gun operation mode during one cycle of the retarding potential change for 1 sec there were ten pulses of the injection current rith the duration 16 msce (or one pulse of injection current with the duration of retarding voltage chenge $\sim 0.5 \mathrm{sec})$. Under such operatine conditions of the analyzer and gun only a comparatively rough catimate of \varnothing value can be made and no conclusions can be made on time variations during one pulse of the injection current.

The use of rather long current pulses ($\tau=2.56 \mathrm{sec})$ in

Araks experiment enabled one to choose the duration of the cycle of the analyzing voltage T / n, where π is the integer, so that to determine ϕ n-times for one long current pulse, and to a certain degree, to follow the dynamics of ϕ variation for T time, The present paper gives the results of ϕ determining at different altitudes during the flight of "Eridan" rocket on January, 26, 1975 .
2. Method of measurement and instrument

On board the rocket "Eridan" at the distance of $\sim 1 \mathrm{~m}$ from the injector two flat identical analyzers with the retarding potential were installed (Fig+1) with the normals under an angle of 90° to each other, as weil as to the rocket and injector axis.

The analyzer represents a flat paralled device consisto ing of the collector 2 and the grid system. Grid 1 is the analyzing one. The sawtooth retarding the electrons voltage is supplied to this grid relative to the body. A maximum voltage value of one analyzer is $\sim 300 \mathrm{v}$, and of second is ~ 3000

Fig. 2a gives the plots the retarding voltage time variations. Collector currents and analyzing voltages were the reconded each 30 msec ; at the moments of measurement analyzing voltages, the whole variation period of which was $\sim 0.6 \mathrm{sec}$, had the following values on Jenuary, 26, 1975.

Table 1

The external grid 4 was under the body potential, grid 3 was supplied by not high positive voltage +40 v , to prevent the ionospheric ion hit to the anslyzer with $\phi \leqslant 0$ (in the intervals between gun pulses). The grid 6 nearest to the collector so called suppressive grid served as the suppression of photo- and secondary emission. A group of grida 5 screens the collector off the varying electric field formed by the analyzing grid 1.

Dynamic range of the measured collector currents is $10^{-10}-10^{-6} a$; the time of reading establishement did not exceed $2 \cdot 10^{-4} \mathrm{sec}$.

At each given moment of tine only those electrons could reach the collector 2 the energies of which E exceed the retarding potential V_{E}.

In preparing the experiment the following simple model of phenomens was supposed (this model proved to be a very idealized): during the flight the rocket is surrounded by the cold ionospheric plasma (the electron temperature $0.1-0.2 \mathrm{ev}$), electron fluxes around the rocket with energies $E>e q$ are negligably small (lower than the amplifier sensitivity level~ $10^{-10} \mathrm{a}$). As the accelerator is operating the rocket body should be charged to some positive ϕ potential and under the effect of the rocket electric field ionospheric electrons will take. $e \varnothing$ energy at the analyzer input. As long as there is the
negative voltage on the grid 1. $\left|V_{R}\right|>\Phi$ ionospheric electrons can not reach the collector. With $\left|V_{R}\right| \leqslant \Phi$ the instrument is "opened", the collector current is sharpily increased to Im value depending on the concentration of ionospheric electrons $n_{e}(h)$ and ϕ value. Then it is recorded as long as $\cdot\left|V_{R}\right|>\Phi$ condition is brought about again. Note that if $n_{e} \sim 10^{5} \mathrm{~cm}^{-3}$, $\mathrm{Te} \sim 0.2$ ev and $\Phi=0$, then Im value should be $\sim 4.10^{-7} \mathrm{z}$; for $\quad \phi=100 \mathrm{v}$ and the same parameters of the surrounding ionospheric plasma $-\sim 10^{-5}$ a, Fig. 2 gives a diagrams of dependence V_{R} on t and expected dependences I on $£(2 a)$ and I on V_{R} por one cycle of V_{R} variation (2b).

As it was mentioned above the accelerator operation prugram for the experiment on January 26, 75 involved periodic injection of beam pulses $I_{i n j}=0.5 A$ with the duration
$\tau_{1}=2.56 \mathrm{sec}$ and the injection angle $\alpha=0^{\circ}(\alpha$ is the angie between the large rocket axis and the injected electron beam), as well as the injection of the beam current short pulses with the same value and the duration $\tau_{2}=2 \cdot 10^{-2}$ sec and with the injection angle $\alpha=0^{\circ}, 70^{\circ}$ and 140° (Fig.3).

It is likely that during the long pulses ϕ potential can be either more than ϕ value during the short pulses or they will be equal.

Besides, there wasn!t cause to expect that electrons with energies $\sim 15 \mathrm{kev}$ and $\sim 27 \mathrm{kev}$ injected under the angle 0° to the rocket axis will hit to the analyzers which are located sufficiently lower than the injector (the analyzer normals to aperture made up the angle 90° with the injector exis). The generator of V_{R} voltage was synchronized with the
operation of the electron gun programming unit so that during each long pulse four retardation curves were measured by use each analyzer.

It is aeen from Table 1 that the minimum retarding voltage with which the analyzer coilector current was measufed was 9.v, consequently electrons with energy $E \leqslant 9 \mathrm{ev}$ were not recorded for given experiment.

In the present paper only those measurements are analyzed which were made during the long injection pulses when the measurement. frequency (30 hz) was enough for obtaining the detailed retardation curves.

3. The measurement results and discussion

During the whole flight on January, 26, 1975 the collector currents in the analyzera were recorded only at the moments of injector operatios Fig 3 presents the examples of telemetry records. for $\alpha=0^{\circ}$ and $\alpha=140^{\circ}$. Time is Varied from the right to the left. Fig 3a corresponds to 142-145 aeconds of the rocket flight when the mean energy of injected electrons was 27 kev the beam current 0.5 a and the plasma generator was operating Fig. 36 shows an example of instrument operation for $283-287$ sec. when the injection energy was approximately ~ 15 kev under unvariable other conditions and Fig. 3 c shows the same as Fig. 3 b but with the plasma generator being switched off (321 to 326 sec). It?s seen from Pig. 3 that in varying the injection energy from 27 kev to 15 kev as well as in switching on and off the plasma
generator the shape of the retardation curves recorded for the long pulse duration does not practically change.

The fact that in pauses between pulses the currents of the analyzexs decreased'to zero evidences apparantly that the processef of the rocket neutralization due to the surrounding plasma conductivity were extremely fast. Unfortunately, it is impossible to take the time moments of the currents appearing and disappesring in the analyzers after the beginning and the end of this gun operation, respectively, with. an exror less than 30 msec according to the available telemetry records because the currents of these abalyzers being recorded with 30 msec period and the injector operation with I msec interval. All this makes the body potential determination impossible at those periods when the accelerator injected short pulses ($\widetilde{\tau}_{2}=20 \mathrm{msec}$) since at the pulse moment each analyzer gave a reading for the current appropriate to a fixed value of the retarding potential V_{R}, only.

Fig. 4 presents the retardation curves obtained in time of long current pulses of the accelerator at different altitudes during the flight. Two scales for the retarding voltege correspond to the two different analyzers of electrons are plotted along X-axis and the currents along Y-axis; the retardation curve for the analyzer with $Y_{R} \lesssim 300 \mathrm{~V}$ are shown by solid line and for one with $V_{R} \leqslant 3000 \mathrm{v}$ by dotted line. The currents values are limited by the range from 10^{-9} to \because 10^{-6} a. It can be seen from Fig. 4 that the stepwise increases of the currents occur within 10^{-7} to 10^{6} a when the retarding potential decreases.

According to mentioned - above the values of retarding potential at the monents of these stepwise increases of the collector currents conforms to the value of the rocket potentials relative to the environmeat.

The ionospheric plasma density slightly changed and amounted to about $10^{5} \mathrm{~cm}^{-3}$ within the considered range of altitudea according to the data taken by the ionospheric station being under operation during the launch on the island of Kergelen as well as to the resulta of the wave measurements carried out of the nose cone*) jettisoned from the "Eridan" rocket during the ilight. As it has been noted above the collector current I of the analyzer opened for ionospheric electrons must be in this case from about 10^{-7} a to $\sim 10^{5}$ a depending on

Fig. 5 shows the examplea of the retardation curves recorded by the analyzer with $V_{\mathcal{K}} \leqslant 300 \mathrm{~V}$ at the periods of long pulses with injection energy of 15 kev . Each sequence of four dependences conforms with single pulve. Some of these retardation curves were obtained in case of the plasma genew rator being switched on (5 a and 5 b) and some of them for the switched off generator (5 b and 5c).

As seen from Fig. 4 and 5 in all the cases the sharp current spike in the both instruments, when the current reaches the value $I \geqslant 10^{-6} \mathrm{a}$, is observed for $V_{R}<300$. It means that the value Φ did not exceed 300 v during the considered flight time.

[^0]The current spikes are not so steep as it can be expected starting from the idealized model described above (to which Fige 2 corresponds). The steepness degree of these spikes seen on the retardation curves indicates to some heating of electrons as compared with their temperature in the unperturbed ionosphere. In addition, the significant fluxes of electrons recorded for $\left|V_{R}\right|>\Phi$. (up to $\left|V_{R}\right|>10 \Phi$ in many cases) is a feature of most of the retardation curves (unexpected in preparing of the experiment). The current spike I with $\left|V_{R}\right| \sim \Phi$ is probably masked in the recording of these electrons when it becomes less aharp and the spread of the fixed values of Φ increases.

The analysis of the electron fluxes with energies $E>e \Phi$ and the discussion of their probable origin are the subject of [5].

As follows from Table 1 the step in changing voltages of both analyzers is almost similar within the range $V_{R} \sim 150$ to 250 v of the retarding voltages. It results from Fig. 4 that within the V_{R} changing between two sequential telemetry points the values of ϕ determined from the data of these analyzers coincide though the conditions $\left|V_{R}\right| \sim \Phi$ are accomplished in both analyzers unsimultaneously. It means that during the period the analyzing voltage variation the value Φ is not practically changed.

It is seen from Fig. 5 that the character of the retardation curves for $h>160 \mathrm{~km}$ is practically independent of altitude. The current I growth front variations up to $I_{m} \gtrsim 10^{6} \mathrm{a}$ evidently reflect the time fluctuations of ionospheric elec-
tron fluxes to the rocket with energies $\mathrm{E}>e \boldsymbol{\phi}$. After the plasma generator being switched off these fluctuations increased whereas the values of V_{R} for which the sharp rise of the current $I_{\text {m }} \geqslant 10^{-6}$ a is observed remained to be the same (see Fig. 5b). At heights $h \quad 125 \mathrm{~km}$ the slight increase of the values $\mid \nabla_{R} / \sim \phi_{\text {is observed and then with the height }}$ decreasing the potential rather sharply drops.

The stable value of ϕ is evidently rather quickly set up after the injection beginning ($\left.t_{\text {set }} \leqslant 30 \mathrm{msec}\right)$. It should be noted that during the experiment [1] the collector current delay equal to about 100 msec relative to the injection current beginning (or its end) was observed. But in this case electrons with energies of about 6 ev and smaller were recorded that couldnot be observed in this experiment.

The spread of ϕ - values obtained during one long pulse is obviously associated with the injection current variations and (or) with the inaccurate determination of the moment of the collector current jump due to the relatively rare telemetry points in measuring the current and the rem tardation potential ∇_{R}.

Fig. 6 gives the altitude variation of \varnothing value. The mean values of ϕ for each long beam pulse determined from the results of eight measurements (four recordings for each analywar) asa oqual to about 150 v at altitudes h higher than 125 to $130 \mathrm{~km} ; ~ \varnothing$ values being practically independent of the situation whether the plasma generation is switched on or off.

As follows from [1] Hess et al. noted that Φ values
during their measurements were rather low but they did not. give the particular values; in Echom experiment the potential did not exceed 100 v.[4].

With the altitude decreasing (from $\mathrm{h} \sim 125 \mathrm{~km}$) of potential
significantly decreases indicates to the improvement of the rocket neutralization conditions. The altitude variation of ϕ shown in Fig. 6 gives grounds for the assumption that at altitudes of about 125 km in the process of neutralization \because : noticeable changes occur. The questions about neutralization in the ionosphere of a body with the high energy potential were considered in [6-8]. Beard and Jchnson [6] ignored the influence of the geomagnetic field on gathering charges by a body. Parker and Murphy [7] analyzing the trajectories of particles in the constant electric and magnetic fields showed that the presense of the geomagnetic field leads to the equation

$$
I \leqslant\left[1+\left(\frac{4 \Phi}{\Phi_{0}}\right)^{1 / 2}\right] I_{0}
$$

where I_{0} is a current gathered by a body from the ionosphere (the body cross-section perpendicular to the magnetie field) without injection; I is a current gathered by a body for Φ potential,

$$
P_{0}=\frac{m \omega_{e}^{2} a^{2}}{2 e}
$$

$\omega_{c}=e B / m$ is a gyrofrequency; a is a body radius;
e and m are a charge and mass of electron, respectively. This equation and the values: $\Phi \sim 150 \mathrm{\nabla}$ and $a \sim 30 \mathrm{~cm}$ used in this experiment, indicate to the fact that the current of ionospheric electrons incoming on to the body with such a potential for $n_{e} \sim 1.5 \times 10^{5} \mathrm{~cm}^{-3}$ in the Parker and

Muxphy model is about by two orders less than the injection current equal to 0.5 A .

Linson [8] assumed that due to the ionospheric plasma turbulence and the electrical field electrons possibly come on to a body along the trajectories normal to the magnetic field; however, this possibility is not proved but postulated only.

The results obtained on 26.1. 1975 during Araks experiment described above show that there is a mechanism (or mechanisms) ensuring the gathering of ionospheric electrons with the current summarized over the total rocket surface of the order of ampere (since the value ϕ did not increase during the long beam pulse). Probably there was not only the gathering of the ionospheric electrons but also of electrons created. as a result of some ionization processes caused by the beam; it most likely occured at altitudes lower than $\sim 125 \mathrm{~km}$ where with the altitude decreasing ϕ-potential gignificantly reduces in syite of n_{e} fall in the ionosphere. The drop of ϕ in turn, should decrease the rocket gathering of ionospheric electrons.

4. Conclusion

During Eridan rocket flight on January 26, 1975 Pollowing the ARAKS experiment program, the altitude dependance of the electric rocket potential relative to the environment was : determined.

In this flight the vaiue of Φ did not exceed 300 v ; at altitudes h Lower than $\sim 125 \mathrm{~km} \phi$ decreased; at $\mathrm{h} \gtrsim$
$125 \mathrm{~km} \phi$ was comparatively stable ($\sim 150^{\circ}$ v) 。
2. The time for the ϕ potential establishment was not higher than 30 msec (30 msec is a period of the recording of the analizer data).
3. During the gun operation near the rocket electrons to

He hoter than thase in the undisturbed ionosphere were observed
4. The plasma generator work slightly influenced on the rocket \varnothing-electric potential.
5. The measurements results of the ϕ altitude variation indicate to the fact that at altitudes $\leqslant 125 \mathrm{~km}$ the process of the neutral upper atmosphere ionozation most likely existed due to the injected electron beam; such a process took possibly place at altitudes $\gtrsim 130 \mathrm{~km}$ (or ${ }^{a}$ certain process resulting in the gathering of ionospheric. electrons across the geomagnetic field.
6. By means of the instruments for potential measuring the electron fluxes with energy $E>e \varnothing$ were also observed; the results of these observations are not discussed in the present paper (see [5]).

References

 E.Stassinopoulos, E\&J.R.Maier. J.Geophys.Res., 76, 6067, 1971.
2. ReA.Hendrickson, ReWsMcEntire, J.R.Winckler. Nature, 30, 564. 1971.
3. ReWeMcEntire, ReA.Henrickson, J.R.Winckler. J.Geophys. Rese, 79; 2343, 1974.
4. JoR。Winckler, RoI。Amoldy, R.A.Hendrickson. J.Geophys. Rese, 80, 2083, 1975.
5. K. I.Gringauz, $\mathrm{N}_{\mathrm{B}} \mathrm{H}_{\mathrm{A}}$ Shutte. Energy spectra of electrons With ≤ 3 kev energy probably accelerated in interacting the injected electron beam with the ionospheric plasma in Araks experiments. Preprint of Space Res.Insto, 1976. 6. D.BeBeard, FeS.Johnson* J. Geophys.Res., 66, 4113, 1961.
7. IeW.Parker, Be IoMurphy. J. Geophys.Res. 72, 1631, 1967.
8. I. ${ }^{[}$.Jinson, J. Geophys.Res., $\overline{14}, 2368,1969$.

Figure captions

Fig. 1. The analyzer scheme.
Fige 2. The variation of analyzing voltage V_{R} during the time (2a) and assumed dependence of collector current on \mathbb{V}_{R}

Fig. 3. The examples of TM-information.
Fig.4. The current-voltage characteristics on changing of analyzing voltage V_{R} from ~ 0 to $\sim 300 \mathrm{~V}$; and from ~ 0 to ~ 3000 v.

Fig.5. The current-voltage characteristics at different altitudes on changing V_{R} from ~ 0 to $\sim 300 \mathrm{~V}$.
Pig. 6. The altitude variation of the rocket potential ϕ.

Fig. 1

(c)

055(02)2		Oтпечатано в VKи AH CCCP
T-09717		Подписано п печати 2\%.4.76
Заказ 616	Tupan IIO	

[^0]: *) Dr. Lavernya kindly made these results available to us.

